Explore fundamental concepts of image segmentation with questions on thresholding, contour detection, and deep learning techniques. This quiz helps you review essential principles, methods, and terminology in the field of digital image analysis and segmentation.
Which of the following best describes image segmentation in computer vision?
Explanation: Image segmentation means partitioning an image into regions that share similar properties, like color or brightness. Increasing brightness affects all pixels equally, not segmentation. Stitching is about joining images, not dividing them. Compression reduces file size and is unrelated to identifying regions within an image.
In thresholding-based image segmentation, what happens to pixels with intensity values above the chosen threshold?
Explanation: In thresholding, pixels above the threshold are typically marked as foreground, making them distinct from the background. Transparency is not a direct outcome of thresholding. Blurring is a separate preprocessing technique. Merging with neighbors is not specifically part of thresholding.
What is the main difference between global and adaptive thresholding techniques?
Explanation: Adaptive thresholding applies different thresholds based on local neighborhoods, handling lighting variations better. Global methods use a consistent threshold throughout. Global thresholding is not limited to grayscale images alone, and adaptive methods don't necessarily guarantee binary output. Automatic local threshold selection is characteristic of adaptive, not global, approaches.
What is the primary purpose of contour detection in image analysis?
Explanation: Contour detection is mainly used to find and outline the shapes or edges of objects. Colorization changes grayscale to color, resizing alters dimensions, and file size reduction does not inherently involve locating boundaries.
After applying a simple threshold to a grayscale image, what does the resulting binary image contain?
Explanation: Thresholding produces a binary image where pixel values are usually set to either 0 (black) or 255 (white). Sharpening is unrelated to thresholding. Color is not introduced, and multi-channel data typically refers to color images, not simple binary images.
How do deep learning models contribute to modern image segmentation tasks?
Explanation: Deep learning models, especially convolutional ones, can assign pixel-level labels by learning from annotated datasets. Finding bright spots is feature detection, not full segmentation. Random assignment and ignoring spatial relations would not lead to meaningful segmentation results.
What distinguishes a contour from an edge in image processing?
Explanation: Contours represent full shapes or object outlines, while edges typically indicate areas of rapid intensity change and might not form closed curves. Color is not a defining property of either. Both contours and edges can be detected in both binary and grayscale images, and the terms are not fully interchangeable.
What type of output does semantic segmentation provide when applied to a street scene image?
Explanation: Semantic segmentation classifies every pixel into a category, such as 'car' or 'road.' Highlighting a single bright pixel, converting images to grayscale, or detecting only one instance per category do not match the pixel-wise, detailed labeling provided by semantic segmentation.
Why might simple thresholding fail on images with uneven lighting conditions?
Explanation: Simple thresholding does not account for variations in lighting, so some regions may be misclassified as background or foreground. It does not produce color images, nor does it require perfect sharpness or modify edge smoothness directly.
Which statement correctly distinguishes instance segmentation from semantic segmentation?
Explanation: Instance segmentation identifies separate objects within a category, such as different cars, whereas semantic segmentation classifies all objects of the same type with one label. Semantic segmentation does not focus solely on backgrounds, nor does it always convert images to vectors or restrict itself to grayscale images.